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Abstract: Two philosophical arguments, e.g. that the meaning of an expression 

outruns its use and that the human arithmetical thinking is not entirely algorithmic 

(Argument Lucas/Penrose), base their theses on Gödel's (first) incompleteness 

theorem. But both in these arguments and in some of their criticisms the word 

"true" is often used ambiguous: it swings between a licit metamathematical use and 

an illicit transfer of it in a formal system. Our aim is to strengthen the dividing line 

between the licit and illicit of it by considering the similarities of the two 

philosophical arguments, via Gödel's theorem (section 1), some limits of 

provability in Peano Arithmetic (PA) (section 2), and the ways we know that 

Gödel's sentence G is true (section 3). As regards this last point, we show that an 

argument for the G's truth can be developed only in a nonconservative extension of 

PA (section 4), by using a ∆-uniform reflection principle (with or without the truth 

predicate). In all these considerations no ambiguity of truth occurs. 
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1. Preliminaries 

1.1. Gödel's theorem and some of its versions 

 One of the greatest discoveries of the 20th century, with logical, 

mathematical and philosophical implications, is the incompleteness 
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phenomenon.1 Such a celebrated result was mainly exploited in two famous 

arguments, firstly, in the argument according to which our arithmetical 

understanding outruns any systematic description (or meaning transcends 

use), and secondly, in the antimechanistic view of mind (or Lucas-Penrose 

argument) according to which "[h]uman mathematicians are not using a 

knowably sound algorithm in order to ascertain mathematical truth".2 In 

order to set out the aim of this paper and the related arguments let us briefly 

review Gödel's results and their connection to the above noted arguments. 

This preliminary part is essential for the considerations of the next sections. 

 The basic system of our discussions will be Peano Arithmetic (PA). 

PA is said to be consistent if for no closed formula (sentence) α holds: 

PA −| α and PA −| ¬α. PA is said to be ω-consistent if for no formula α(x) 

the following holds: PA −| α(0), PA −| α(1), PA −| α(2),... and PA −| ∃x¬α(x). 

If in this definition α(x) is primitive recursive, then PA is said to be 1-

consistent. 

 Let Pf(x,y) be the following relation of intuitive arithmetic3: "x is 

(the Gödel number of) a proof in PA of the formula (with Gödel number) y". 

This is primitive recursive (also decidable), hence it is representable 

(expressible) in the formal PA by, say, a formula π(x,y), i.e. for any natural 

numbers k1, k2 holds: 

 Pf(k1,k2) is true iff PA −| π(k1,k2) (1) 

 Pf(k1,k2) is false iff PA −| ¬π(k1,k2) (2) 

where k1, k2 are the numerals for the corresponding natural numbers. 

                                                
1 Cf. K. Gödel [1]. 
2 Cf. R. Penrose [1], 76. 
3 The distinction between intuitive and formal variables of arithmetic will be given by using 
x, y and x, y, respectively. 
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 If for a relation R only (1) is the case, then it is called weak 

representable by the respective formula in PA. As is well-known, recursive 

enumerable sets (or Σ1-sets) are weakly representable, in contrast with 

decidable sets which are representable. 

 If a formula α is provable in PA, then we say that there is a proof x 

of the formula y. This is an example of a recursively enumerable relation, 

weakly representable in PA by the open formula ∃xπ(x,y).4 This formula is 

the provability predicate for PA: Bew(y). 

 There are many ways to construct Gödel's sentence G. The simplest 

one is by the application of diagonal lemma. 

 Diagonal lemma (DL). If α(y) is a formula of PA containing y free, 

then there is a sentence G such that 

PA −| S≡α
┌S┐ 

where ┌S┐ is the formal name of the sentence S (or the numeral for the 

Gödel number of S). 

 Let us now consider the formula ∀x¬π(x,y), where π(x,y) is the 

formula of PA representing the proof relation Pf(x,y) in PA. Then the 

intuitive meaning of this universally quantified formula is: there is no proof 

in PA of the formula y. By one application of DL we have 

 PA −| G≡∀x¬π(x,┌G┐) (3) 

that is, the sentence G is provably equivalent to a formula asserting, via 

arithmetization, that G is not provable in PA. The Gödel's first 

incompleteness theorem can now be stated. 

 Th G1. a) If PA is consistent, then PA /|− G. 

                                                
4 We say that ∃xπ(x,y) weakly represents the theoremhood in PA, or the set Th of theorems 
of PA. 
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   b) If PA is ω-consistent, then PA /|− ¬G. 

 The Gödel's second incompletess theorem is stated in following 

terms: if PA is consistent, then the formula Con(PA) expressing in the 

language LPA of PA the consistency of PA is not provable in PA, i.e. 

 Th G2. If PA is consistent, then PA /|− Con(PA). 

 As is well-known, Th G2 is just Th G1a) formalized. 

 Actually, in the proof of Th G1b) only the 1-consistency of PA is 

needed.5 

 Penrose uses Th G1 in order to argue against the mechanistic view 

of the mind. His version of Gödel's result is stated in terms of Turing 

machines6 as follows: 

 Gödel's theorem (Turing version). If A(q,n) is a sound procedure 

for ascertaining the non-halting of the computation Cq(n), then it is 

incomplete. 

 More detailed, A(q,n) is sound if whenever A stops on the input 

(q,n), the computation Cq(n) does not stop. By using Cantor's diagonal 

method7 we can argue that for some k the computation Ck(k) does not stop 

and A(k,k) cannot stop either. So, if the halting of A(q,n) is a sufficient 

condition for the non-halting of a Turing machine, then it is not a necessary 

one. So if A(q,n) is sound, then it is incomplete. 

 Is not hard to see that Th G1 a) and Turing version are connected, 

given the fact that every formal system can be recast as a theorem-proving 

machine and vice-versa. Indeed, Turing version is similar to Kleene's 

                                                
5 Cf. the variant of Gödel's theorem below, via the equivalence (5). 
6 Cf. R. Penrose [1], 74-75. 
7 Turing's proof of nondecidability of the halting problem for Turing machines is based on 
such diagonal arguments; cf. A. Turing [1]. 
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generalization8 of Gödel's theorem, according to which there is no correct 

and complete formal system for the intuitive predicate (y) 1T (x,x,y). The 

"translation" of one form in the other can be given in this way. If S is a 

formal system and α(x,y) is a formula of S expressing the intuitive predicate 

P(x,y), then S is sound (correct) for P if this conditional holds: if −| α(q,n), 

the P(q,n), for any pairs of numbers (q,n). And S is complete for P if the 

converse is the case. By putting P(q,n) iff Cq(n) does not stop, and A(q,n) 

stops iff S −| α(q,n), the "translation" is accomplished. With P(x,x) for 

Kleene's predicate (y) 1T (x,x,y), the Kleene's form of Gödel's theorem 

follows: if S is sound for the intuitive predicate P(x,y) then it is not complete 

for it, i.e. there is a k such that P(k,k) is true and S /|− α(k,k).9 

 But the Gödelian sentence G is equivalent to the π1-sentence 

∀x¬π(x,g). By some fundamental results in proof theory10 the following 

holds: 

 Con(S)≡π1-soundness(S) (4) 

 1-Con(S)≡Σ1-soundness(S), (5) 

where Con(S) is the formula of S expressing its consistency, and π1(Σ1)-

soundness(S) is the sentence expressing the soundness of S restricted to π1 

and Σ1-sentenes, respectively. By these equivalences, Gödel's theorem for 

PA can be restated in this form: 

 Gödel's Theorem. a) If PA is π1-sound, then PA /|− G. 

          b) If PA is Σ1-sound, then PA /|− ¬G. 

 

                                                
8 Cf. S.C. Kleene [1], Th. XIII (Part I), p. 302. 
9 Cf. S.C. Kleene [1], Th. XIII (Part II), p. 303. 
10 Cf. C. Smorynski [1]. Th. 4.1.4, Th. 4.2.2. 
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1.2. Two arguments based on Gödel's theorem and some criticisms 

 This correspondence between Gödel's theorem and its Turing 

version reveals us the connection between the two mentioned arguments 

based on Gödel's result: our intuitive arithmetical understanding cannot be 

encapsulated neither in a formal system (i.e. the meaning of an expression 

transcends its use11), nor, equivalently, by using of some set of algorithmic 

procedures like Turing machines. Referring to the second case, Penrose 

says12 that 

 

 [...] if we know that A is sound, then we know that Ck(k) does 

not stop. Thus, we know something that A is unable to ascertain. 

It follows that A cannot encapsulate our understanding. 

 

 Both arguments have raised many objections. But many times even 

such objections use the word "true" in a careless way, obscuring by that the 

critical analysis they intend to do. Let us consider two notable examples, 

directly related to the above arguments. 

 In referring to a line of argumentation as that contained in the 

quotation from Penrose given above Hilary Putnam considers that the use of 

Gödel's result in such an argument 

 

[...] is a misapplication of Gödel's theorem, pure and simple. 

Given an arbitrary machine T, all I can do is find a proposition 

[G] such that I can prove: 

                                                
11 E.g. the meaning of "true of all natural numbers" outruns any attempt to be characterized 
by a formal system. 
12 Cf. R. Penrose [1], 75. 
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  (3) If T is consistent, [G] is true, 

where [G] is undecidable by T if T is in fact consistent. 

However, T can perfectly well prove (3) too! And the statement 

[G], which T cannot prove (assuming consistency), I cannot 

prove either (unless I can prove that T is consistent, which is 

unlikely if T is very complicated).13 

 

 In referring to the question whether Gödel's result can be an 

argument against the idea that the meaning of an arithmetical concept 

outruns its use in a formal system, Michael Dummett wrote14: 

 

Considered as an argument to a hypothetical conclusion – that if 

the system is consistent, then ∀xA(x) is true – this reasoning can 

of course be formalized in the system. 

 

 Both quotations contain a misuse of the word "true", a use of it 

beyond the limits admitted by the argument they give in order to criticize 

the antimechanist view or the thesis that meaning transcends use. So, can a 

Turing machine "perfectly well prove (3) too", as Putnam thinks? And can a 

formal system S prove the conditional "if the system is consistent, then 

∀xAx is true", as Dummett considers? 

 The answer to these questions is of course "no". Since, for example, 

if we want to accurately formalize Putnam's saying "(3) If T is consistent, 

[G] is true", from the quotation above, what we obtain is just the implication 

Con(T)⊃Tr(┌G┐), containing the semantical predicate Tr(x). And, as is 

                                                
13 Cf. H. Putnam [1], 366. 
14 Cf. M. Dummett [1], 192. 
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well-known, by Tarski's theorem such an insertion in a theory of its own 

truth predicate does make it inconsistent. So, Putnam's assertion that "T can 

perfectly well prove (3) too!" is pure and simple false. The same is the case 

with Dummett's assertion "[...] if the system is consistent, then ∀xA(x) is 

true". 

 We do not intend neither to review the above mentioned argument, 

not to review their criticisms. Our aim is rather to sharpen the dividing line 

between the licit and illicit uses of true, by considering what can and what 

cannot be proved in PA and the ways the truth of G can be argued. 

 

 

2. What can and what cannot be proved in PA 

 Let us begin by note the correspondence between PA and the modal 

system GL, known as provability logic. This connection is given by the 

following equivalence15 

GL −| α if and only if, for every realization *, PA −| α
*  (Eq) 

That is, every theorem of GL is, interpreted, a theorem of PA and 

conversely. As is well-known, by arithmetization our metamathematical 

assertions can be converted in arithmetical functions and relations, 

representable (under some assumptions) in PA. The assertion "S is provable 

in PA" is the sentence Bew(┌S┐), "S is not provable in PA" is the sentence 

¬Bew(┌S┐), "PA is consistent" is the sentence ¬Bew(┌⊥
┐), where ⊥ is the 

logical falsity, and "S is undecidable in PA" is the sentence 

¬Bew(┌S┐)∧¬Bew(┌¬S┐). Evidently, an assertion is provable in PA if its 

arithmetization is provable in PA. 

                                                
15 Cf. R. Solovay [1], G. Boolos [1], Ch. 3 and Ch. 9. 
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 A remarkable result concerning the provability in PA is the 

following theorem.16 

 Löb's theorem. If PA −| Bew(┌S┐)⊃S, then PA −| S, whose 

formalization in PA is the following expression: 

PA −| Bew(┌(Bew(┌S┐)⊃S┐)⊃Bew(┌S┐). 

 By (Eq), GL −| □(□p⊃p)⊃□p. 

 An expression of the form Bew(┌S┐)⊃S is called the reflection 

principle for S. The converse of Löb's theorem is also provable in PA, hence 

PA −| Bew(┌S┐)⊃S if and only if PA −| S, 

and this equivalence characterizes the provable cases of reflections, i.e. a 

reflection for a sentence S is provable if and only if S is provable. 

 As is well-known, Th G1a) can be formalized in PA, and the 

corresponding formula is provable in PA,17 i.e. 

 PA −| Con(PA)⊃G, (1) 

where Con(PA) is a formula of PA expressing the consistency of PA. It can 

be ¬Bew(┌⊥
┐), respectively ∀x¬π(x,┌0=1

┐). And the converse of the 

implication in (1) is also provable, since if there is a sentence not provable 

in PA, then PA is consistent, i.e. 

 PA −| G⊃Con(PA) (2) 

whence 

 PA −| Con(PA)≡G (3) 

By DL, G is the fixed point of the formula ∀x¬π(x,y) or ¬Bew(y), 

respectively, so 

                                                
16 Cf. M.H. Löb [1]. 
17 Gödel gave only some hints of how this proof can be carried out, the full proof as such 
was given latter by Bernays, in D. Hilbert, P. Bernays [1], 283-340. The implication in (1) 
is just the formalization of Gödel's second incompleteness theorem Th G2. 
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 PA −| G≡¬Bew(┌G┐) (4) 

and therefore by (3) and (4) 

 PA −| Con(PA)≡¬Bew(┌G┐) (5) 

Based on the fact that GL −| □(p≡¬□p)⊃□(p≡¬□⊥), its arithmetical 

counterpart is provable in PA, i.e. PA −| Bew(┌G≡¬Bew(┌G┐)┐)⊃ 

Bew(┌G≡¬Bew(┌⊥
┐)┐). It follows, via (4), that 

 PA −| G≡¬Bew(┌⊥
┐) (6) 

 The conditional b) of Th G1 can also be formalized in PA. Let us 

suppose that 1-Con(PA) is a formula of the language of PA expressing "PA 

is 1-consistent". Then b) is the formula 1-Con(PA)⊃Bew(┌¬G┐) or, 

equivalently, by (4), 1-Con(PA)⊃¬Bew(┌Bew(┌G┐)┐). And, moreover, this 

implication is a theorem of PA, i.e. 

 PA −| 1-Con(PA)⊃¬Bew(┌Bew(┌G┐)┐). (7) 

 An informal argument for the truth of this implication is this. By Th 

G1a) G is not a theorem of PA. That is, Pf(k,g), where g is the Gödel 

number of G, is false for any k. Hence PA −| ¬π(k,g) for any k, by 

representability.18 Now, if PA is 1-consistent, then PA /|− ∃xπ(x,g), 

equivalently PA /|− Bew(┌G┐). And therefore, by (4) and (6), if PA is 1-

consistent, then PA /|− Bew(┌⊥
┐) and, consequently, 

PA /|− Bew(┌Bew(┌⊥
┐)┐), PA /|− Bew(┌Bew(┌Bew(┌⊥

┐)┐)┐) and so on. 

 Therefore, by (7) the second part of first incompleteness theorem, Th 

G1b), is also formalizable in PA and provable in PA. 

 Finally, let us note an important result concerning the undecidability 

of G (and therefore of Con(PA)) in PA. 

                                                
18 Or by Σ1-completeness of PA. 
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 The modal system GL proves the following implication: 

¬□□⊥⊃(¬□¬□⊥∧¬□¬¬□⊥). Hence its arithmetical counterpart is provable 

in PA, that is 

 PA −| (¬□□⊥⊃(¬□¬□⊥∧¬□¬¬□⊥)*. (8) 

 This means that PA proves the following metamathematical 

assertion (formalized): if the inconsistency of PA is not provable in PA, 

then G (and hence Con(PA) is undecidable in PA. 

 Therefore, (1)-(8) are some of the most remarkable assertions 

provable in PA. Let us see, concisely, what cannot be proved in PA. 

 Of course, if PA is 1-consistent, then PA is consistent, since if α(x) 

is a formula such that PA −| ¬α(n) for any n, then by 1-consistency the 

formula ∃xα(x) is not provable in PA. So PA is consistent, otherwise any 

formula would be provable in PA. The converse of this conditional does not 

hold, so PA does not prove it, i.e. 

 PA /|− Con(PA)⊃1-Con(PA) (1*) 

 The proof is simple, for by (4), (6) and (7), if it were provable, then 

in PA would be provable Con(PA)⊃¬Bew(┌Bew(┌⊥
┐)┐), equivalent to 

PA −| ¬Bew(┌⊥
┐)⊃¬Bew(┌Bew(┌⊥

┐)┐), by (3) and (6), and to 

PA −| Bew(┌Bew(┌⊥
┐)┐)⊃Bew(┌⊥

┐), respectively. From where, by Löb's 

theorem PA −| Bew(┌⊥
┐), i.e. PA would be 1-inconsistent. 

 Nor the converse of the implication in (7) is provable in PA, i.e. 

 PA /|− ¬Bew(┌Bew(┌G┐)┐)⊃1-Con(PA) (2*.1) 

respectively, 

 PA /|− ¬Bew(┌Bew(┌⊥
┐)┐)⊃1-Con(PA) (2*.2) 
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 The proof can be given by reductio, based on the fact that PA −| 1-

Con⊃¬Bew(┌Bew(┌Bew(┌⊥
┐)┐)┐) and one application of Löb's Theorem 

 PA /|− ¬Bew(┌⊥
┐)⊃¬Bew(┌Bew(┌G┐)┐) (3*.1) 

 PA /|− ¬Bew(┌⊥
┐)⊃¬Bew(┌Bew(┌⊥

┐)┐) (3*.2) 

We note a remarkable difference between (1*) and (2*), on the one hand, 

and (3*), on the other hand. Both implications in (1*) and (2*) are 

metamathematically false statements of PA. The formulas in (3*), though 

not provable in PA, are metamathematically true statements of PA. I.e. by 

an informal argument, (3*) can be proved as being true. The proof is simple, 

let us show this for (3*.1). 

 Proof (reductio). The conditional formalized in (3*.1) is therefore: if 

PA is consistent then the sentence G is not refutable in PA. Let us suppose 

that PA −| ¬G, then PA −| Bew(┌¬G┐), by derivability conditions for Bew(y). 

But we also have PA −| Bew(┌G┐), by (4) above. So, if PA −| ¬G, then 

PA −| Bew(┌G┐)∧Bew(┌¬G┐). But GL −| (□p∧□¬p)⊃□⊥. So 

((□p∧□¬p)⊃□⊥)* is a theorem of PA. Hence, for p*=G does follow 

PA −| Bew(┌⊥
┐), i.e. PA proves its own inconsistency. So, if PA is 

consistent, then ¬G is not provable in PA.19 

 But by Th G1a), if PA is consistent, then the sentence G is also not 

provable in PA. So, informally, the simple assumption of consistency is 

sufficient for the undecidability of G. 

 By (3*.1) the nonprovability of ¬G does not follow formally from 

the simple consistency. Hence, formally the undecidability of G does not 

follow from the simple consistency of PA, or from a single reflection (since 

                                                
19 In S. McColl's view the implication in (3*.1) is a notable example of a truth not 
knowable by a Turing machine; cf. S. McCall [1]. 
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¬Bew(┌⊥
┐) is just the reflection Bew(┌⊥

┐)⊃⊥). So the undecidability of G 

in PA needs a stronger hypothesis, as (8) above shows. This hypothesis, 

(¬□□⊥)*, equivalent to (□□⊥⊃⊥)* is just the conjunction of two reflections: 

(□□⊥⊃□⊥)* and (□⊥⊃⊥)*, the last expression being just the expression 

¬Bew(┌⊥
┐), i.e. Con(PA). 

 Let us (temporarily) summarize. What really shows the 

metamathematical proof of Gödel's theorem? By Th G1a), if PA is 

consistent, then G is not provable in PA, and by Th G1b), if PA is 1-

consistent, then ¬G is not provable in PA. Both conditionals are 

formalizable in the language of PA, and mathematically provable in PA (cf. 

(1) and (7)). By (3), (5) and (6) the following equivalences are also provable 

in PA: Con(PA)≡G≡¬Bew(┌G┐)≡¬Bew(┌⊥
┐). And the implication in (1) is 

just the formalization of Gödel's second incompleteness theorem, Th G2. 

 So, formalizable or not, Th G1 proves conditional assertions, of the 

form "If... then___", and nothing more. 

 But, as we noted above, both conditionals of Th G1 can be 

metamathematically provable only under the assumption of simple 

consistency. However, in this case the second part, b), of Th G1, formalized, 

though a true sentence of PA, is no more provable in PA (by (3*)). 

 Hence, by (3*) and (8), the undecidability of G (and Con(PA)) in PA 

does not formally follow only from the assumption of simple consistency. 

 If, after all, what is proved, formally or not, by Th G1 is a 

conditional assertion, without any reference to the notion of truth of the 

undecidable sentence G, then which are the reasons of sayings of the form: 

by Gödel's theorem we know that G is true? Of course, since the language 

LPA has no semantical terminology, talking about G's truth is carried out 

outside PA. 
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 As often as not the truth of the sentence G is associated to Gödel's 

theorem Th G1 a). But, how do we conclude that the sentence G is true? By 

saying "G is true" we essentially take into account anyone of the following 

two things: 

 a) G is metamathematically (informally) provable as being true. 

 b) G is formally provable as being true. 

 Let us question both ways. 

 

3. How do we know that G is true? 

 The most explanatory form of the semantical argument for the truth 

of G is given in Dummett's paper on this topic.20 But some arguments, in a 

more poor fashion, have been given previously.21 On Lucas view, for 

example, the truth of G follows directly from Gödel's theorem Th G1a), for 

G is a self-referential sentence, asserting "This formula is unprovable-in-

the-system", and therefore 

 

if the formula "This formula is unprovable-in-the-system" is 

unprovable-in-the system, then it is true that the formula is 

unprovable-in-the-system, that is, "This formula is unprovable-

in-the-system" is true.22 

 

This line of argumentation, based on Gödel's theorem, but more analytical, 

is given later by Mendelson.23 On his view, G is a sentence of the form 

∀x¬π(x,g), where g is the Gödel number of G and π(x,y) is the formula 

                                                
20 Cf. M. Dummett [1]. 
21 E.g. E. Nagel and J. Newman [1], and J.R. Lucas [1]. 
22 Cf. J.R. Lucas [1], 121. 
23 Cf. E. Mendelson [1], 144. 
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expressing the intuitive relation Pf(x,y): "x is a proof of y". So G states that 

the relation Pf(x,g) is false for any numerical value of x, that is, there is no 

proof in PA of the sentence G. But G states exactly this thing. So, by 

Gödel's theorem, if PA is consistent, then G is not provable in PA. So G is 

unprovable in S, but a true sentence of S. 

 Both these examples base their argument on Gödel's result. 

 Let us consider Dummett's semantical argument. 

 On his view, the argument for the truth of G is given in the following 

terms: 

 

The statement [G] is of the form ∀xA(x), where each one of the 

statements A(0), A(1), A(2),... is true: since A(x) is recursive, 

the notion of truth for these statements is unproblematic. Since 

each of the statements A(0), A(1), A(2),... is true in every model 

of the formal system, any model of the system in which [G] is 

false must be a non-standard model. [...] whenever, for some 

predicate B(x), we can recognize all of the statements B(0), 

B(1), B(2),... as true in the standard model; then we can 

recognize that ∀xB(x) is true in that model.24 

 

 Furthermore, 

 

The argument for the truth of [G] proceeds under the hypothesis 

that the formal system in question is consistent. The system is 

assumed, further, to be such that, for any decidable predicate 

B(x) and any numeral n, B(n) is provable if it is true, –B(n) is 

                                                
24 Cf. M. Dummett [1], 191; the argument given in Mendelson [1], 144, is similar. 
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provable if B(n) is false (the notions of truth and falsity, for 

such statements being, of course, unproblematic). The particular 

predicate A(x) is such that, if A(n) is false for some numeral n, 

then we can construct a proof in the system of ∀xA(x). From 

this it follows – on the hypothesis that the system is consistent – 

that each of A(0), A(1), A(2),... is true.25 

 

 Let us briefly analyse Dummett's argument for the truth of G. As we 

noted above, G is the sentence ∀x¬π(x,g), where π(x,y) is the formula 

expressing in PA the primitive recursive relation Pf(x,y): "x is a proof of y". 

It is a primitive recursive formula and so is the formula, ¬π(x,g). Being 

decidable, for every value of x, the corresponding instances are provable in 

PA, i.e. PA −| ¬π(0,g), PA −| ¬π(1,g), PA −| ¬π(2,g),... On Dummett's view 

the truth of G follows by these two steps: 

 1. Being provable, all sentences ¬π(0,g), ¬π(1,g), ¬π(2,g),... are 

true (in the standard model M). 

 2. All these sentences being true (in M), the universally quantified 

sentence ∀x¬π(x,g) is also true (in M). 

 The second step is "trivial" (p. 192) indeed, for it follows by 

semantics of the universally quantified sentences, i.e. ∀xA(x) is true in M if 

and only if A(x) is true in any assignment µ in M, if and only if A(n) is true 

for any natural number n. 

 The key step is, of course, 1, for it expresses the idea that if a 

formula is provable in PA, then it is true (in M). It expresses the soundness 

                                                
25 Cf. M. Dummett [1], 192. 



 55 

of PA, or ∆-reflection principle for PA (∆-Refl), and cannot be 

unproblematically inserted in PA.26 

 Of course, Dummett is right in asserting that under the assumption 

of consistency of PA, all the instances of ¬π(x,g) are true, for if one of them 

would be false, then it can be argued that G is provable in PA. Indeed, let us 

suppose that for a natural number k, the sentence ¬π(k,g) is false. Then 

π(k,g) is true, so it is provable in PA by Σ1-completeness of PA. Hence 

Pf(k,g) is true, by representability, that is the sentence with Gödel number g, 

i.e. G itself, is provable in PA, i.e. PA −| G, contrary to what Gödel's theorem 

Th G1 a) asserts. 

 So, to sum up: metamathematically, the argument for the truth of G 

depends essentially on something not co-optable in PA, i.e. on the idea: 

every (closed) formula, provable in PA, is true in M. Let us detail this idea 

below. 

 

4. Conservative and nonconservative extensions of PA 

 The truth of the Gödelian sentence G can therefore be 

metamathematically argued, in the ways noted above. But what about a 

proof of the fact that G is true? Of course, two mentions have to be made ab 

initio. Firstly, by Th G1a), such a proof cannot be carried out within PA, 

and secondly, it depends on what is meant by a proof of the "truth of G". If 

what is to be proved is Tr(┌G┐), where "Tr(x)" is the truth predicate for a 

specified language, then a semantical apparatus must be added to the given 

theory. But if what is required is only a derivation of G, then the things are 

different. Let us see! 

                                                
26 Cf. sect. 5 below. 
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 Let LPA be any standard formalized first-order language of Peano 

Arithmetic. Let PA
*
PA LL = ∪{Tr(x),┌...┐} be an extension of LPA (i.e. 

*
PAPA LL ⊂ , obtained from LPA by adding a truth predicate for the initial 

language LPA and a quotation operator. Now, if we consider all equivalences 

of the form Tr(┌α
┐)≡α, for any closed α, belonging to PAL , as axioms of a 

theory Defl,27 then it is just a truth theory for the language LPA. 

 An important difference between various extensions of a theory 

concerns the nature of such an extension, i.e. whether the respective 

extension is conservative or not. Essentially, the theory T* is a conservative 

extension of T if the following holds: if α is a sentence of LT and T*
−| α, 

then T −| α, i.e. any sentence of the language of T, provable in T* is also 

provable in T. 

 Let now PA*=PA∪Defl be an extension of PA. Is it sufficient to 

prove that G is true by proving Tr(┌G┐)≡G? Not at all! For, as is well-

known, such an extension of PA is conservative over PA.28 So for a proof of 

G's truth a stronger theory is needed. Which one? Tarski saves us again.29 

Let us sketch Tarkian theory of truth (via satisfaction). 

 Let Sat be a theory of satisfaction, formulated in a language 

)y,x(SatLL PA
*
PA ∪= , an extension of the language of PA.30 The theory Sat 

contains the axioms for the semantical predicate Sat(x,y), and allows the 

                                                
27 Deflationism, a theory of truth in Tarski's sense, i.e. it satisfies Tarski's truth Schema T 
(or Convention T): Tr(┌α┐)≡α, for any sentence α. 
28 An interesting proof of its conservativeness, is given in J. Ketland [1], Theorem 1. 
29 Cf. A. Tarski [1]. 
30 This metalanguage is much more powerful than the metalanguage of Defl, since it 
contains a variety of syntactical predicates, operators, the satisfaction predicate Sat(x,y) and 
many other entitities. 
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construction of the so-called inductive definition of truth and an explicit 

definition of truth (given in *
PAL , in terms of the predicate Sat(x,y)).31 

 Let PA*=PA∪Sat be an extension of PA. This theory proves Tarski's 

schema T (it is therefore an extension of Defl), but proves much more. As 

Tarski's showed,32 in PA* we can prove that the axioms of PA are true and 

its rules of deduction preserve truth, hence PA* proves that any formula of 

PA, provable in PA is true. But this is just a reflection for PA: 

∀x(Bew(x)⊃Tr(x)). Therefore, a remarkable fact about PA*: 

PA*
−| Refl(PA):∀x(Bew(x)⊃Tr(x)) 

It is clear that such an extension of PA is not generally conservative over 

PA, i.e. PA* proves some sentences of LPA not provable in PA. A simple 

example shows this. Let us take for x in Refl(PA) the "value" 0=1. Then 

PA*
−| Bew(┌0=1

┐) ⊃Tr(┌0=1
┐). Hence PA*

−| Bew(┌0=1
┐)⊃(0=1) (by 

Schema T). But PA*
−| ¬(┌0=1

┐). Hence PA*
−| ¬Bew(┌0=1

┐), i.e. 

PA*
−| Con(PA). But Con(PA) is not a theorem of PA, by Th G2. 

 In a similar fashion, a proof of Gödel's sentence G of PA in PA* is 

an easy task. By (4), section 2, PA*
−| G≡¬Bew(┌G┐), and by Refl(PA), 

PA*
−| Bew(┌G┐)⊃Tr(┌G┐) and therefore PA*

−| Bew(┌G┐)⊃G, by Schema T. 

Hence PA*
−| Bew(┌G┐) ⊃¬Bew(┌G┐) and thus, by propositional calculus, 

PA*
−| ¬Bew(┌G┐), i.e. PA*

−| G, and finally PA*
−| Tr(┌G┐) by Schema T. 

 Actually, the provability of G's truth in PA* could be obtained 

directly from the above proof of Con(PA) in PA*, via (3) of section 2: 

PA −| Con(PA)≡G and Schema T. 

                                                
31 Sat is the theory of satisfaction (truth) for the language LPA. 
32 Cf. A. Tarski [1], Theorem 5; comp. and S. Feferman [2], 16, Theorem 2.5.3. 
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 To sum up, the formal proof of "G is true" can be given only in a 

non-conservative extension PA* of PA, a theory in which the reflection 

Refl(PA), i.e. the sentence ∀x(Bew(x)⊃Tr(x)), is provable. 

 In other words, since both sentences, G for PA and Con(PA), are 

sentences of PA, i.e. all the symbols occurring in them are symbols of LPA, 

and since G and Con(PA) are not provable in PA, but are provable in PA*, 

this means that PA* does not extend PA conservatively. Or, the proof of "G 

is true" (essentially based on the provavility in PA* of Refl((PA)) and the 

conservativeness of PA* over PA are not compatible.33 

 A question arises: is this incompatibility, due to the use of the truth 

predicate Tr(x) in the above proof, beyond the deflationary licit use of it in 

Schema T? 

 As our proof above suggests, the answer to this question is "no". But 

a convincing argument for this answer requires some considerations on 

reflection principles. 

 

5. Reflection principles (more about them) 

 So, what do we really need in order to prove the Gödel sentence G, 

without any formal use of the truth predicate Tr(x)? A hint is given by the 

Dummett's metamathematical argument (in sect. 3). If we succeed in 

inserting both steps of this argument in a formal system of arithmetic, 

without using the truth predicate, then G can be derived. As we saw, his 

argument is essentially this: if 1. all provable instances of the formula 

¬π(x,g) are true, then 2. the universal quantified sentence ∀x¬π(x,g) is also 

                                                
33 S. Shapiro [1] uses this kind of incompatibility in order to argue against the deflationism 
as a complete account of truth. Briefly, the argument is: since the "conservativeness is 
essential to deflationism" (497) and no conservative extension of PA proves that G is true, 
it follows that deflationism is not an adequate theory of truth. 
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true. How can they be inserted? As we know, the sentence G is the fixed 

point of the formula ∀x¬π(x,y), where π(x,y) is the formula of PA 

expressing formally in PA the primitive recursive relation Pf(x,y): "x is a 

proof of y". π(x,y) is a ∆-formula and so is ¬π(x,y), hence all instances of 

the formula ¬π(x,g), where G is the Gödel number of G, are provable in 

PA, i.e.: 

PA −| ¬π(0,g), PA −| ¬π(1,g), PA −| ¬π(2,g),... 

 In order to derive ∀x¬π(x,g), we need a rule of the following form: 

          PA −| ¬π(0,g), PA −| ¬π(1,g), PA −| ¬π(2,g),... 

R-ω   

                                       ∀x¬π(x,g) 

 But such a rule, does not mimic, by itself, Dummett's reasoning, for 

in his argument the truth of conclusion (the sentence G) follows from the 

truth of the infinite sequence of sentences ¬π(0,g), ¬π(1,g), ¬π(2,g),... So 

the missing step 1 can be explicitly introduced in one of the following 

forms: a) by supplementing the above rule with a reflection principle of the 

form: all provable sentences in PA are assertable, or by b) a reformulation 

of the premise of this rule. In the last case that infinite sequence of 

sentences have to be replaced by a formula expressing the following fact: 

PA proves that all instances of ¬π(x,g) are provable. Indeed, this premise of 

R-ω can be formally expressed by the formula ∀xBew(┌¬π(x,g)┐).34 

Moreover, this formula is provable in PA, i.e. PA −| ∀xBew(┌¬π(x,g)┐). So, 

in order to derive the Gödel sentence ∀x¬π(x,g) one application of the 

following rule will do the job: 

                                                
34 This is possible, since PA is an axiomatic theory (i.e. the set of its theorems is recursively 
enumerable), so its proof relation can be expressed, via arithmetization, by a primitive 
recursive predicate π(x,y). 
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                          PA −| ∀xBew(┌¬π(x,g)┐) 

R-ω (weak)35    

                                      ∀x¬π(x,g) 

But a remark has to be added. The provability in PA of the formula 

∀xBew(┌¬π(x,g)┐) does not entail that this form of ω-rule is a part of PA. 

So, what really means "the provability of G by using this rule" is just the 

following fact: G is provable in a proper extension of PA, i.e. G is provable 

in PA*=PA+R-ω (weak).36 

 In a celebrated paper37 S. Feferman proved that R-ω (weak) is 

equivalent to the following two uniform reflection principles:38 

  URefl1: ∀xBew(┌α(x)┐)⊃∀xα(x); α has only x free 

  URefl2: ∀x[Bew(┌α(x)┐)⊃α(x)]; α has only x free 

 In the above reflection principles the only restriction is that the 

formula α does contain only x free. Otherwise α can have an arbitrary 

complexity. But in order to derive G or Con(PA) in an nonconservative 

extension of PA this strengthening of reflections is not necessary. As we 

saw, in the premise of R-ω (weak), the formula ¬π(x,g) is a ∆-formula (i.e. 

decidable). So what is really needed in order to derive ∀x¬π(x,g) as a 

conclusion is a R-ω (weak) or, equivalently, URefl1 or URefl2, restricted to 

formulas of this kind. Indeed such a reflection principle is available.39 A 

result of C. Smorynski40 helps us to establish its validity. By his Theorem 

                                                
35 "R-ω weak", i.e. weaker than the preceding form R-ω, since its premise is stronger than 
the provability of each of the sentences in the premise of R-ω. 
36 Of course, PA* is a proper extension of PA only if PA is consistent. 
37 Cf. S. Feferman [1]. 
38 Cf. S. Feferman [1], Theorem 2.19(i), 276, via Definition 2.16, 274. 
39 It is usually called "uniform primitive recursive reflection". 
40 Cf. C. Smorynski [1]. 
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4.1.4 (p. 846), if α(x) in all these principles is a π1-formula, then the 

following equivalences can be established over PA: 

Con(PA)≡URefl1≡URefl2. 

But these equivalences are preserved by restricting α(x) to ∆-formulas and, 

by Feferman's considerations, R-ω (weak) is equivalent to anyone of them. 

Hence any extension of PA with anyone of the above mentioned reflections 

is equivalent to an extension of PA with Con(PA). And by Th G1a) this is 

just what is needed in order to prove the sentence G. 

 Let us show how a proof of G in PA*=PA∪R-ω (weak) (or in any 

equivalent extension of PA) can be carried out. 

 We show, firstly, that the premise of R-ω (weak) holds. For this task 

let us suppose that PA is consistent and G is provable in PA, i.e. PA −| G. 

This means that there is a k the Gödel number of a proof of G in PA. Hence 

Pf(k,g) is true. By representability of Pf in PA, this implies that PA −| π(k,g). 

But G is the fixed point of the formula ∀x¬π(x,y), so the provability of G in 

PA entails that PA −| ∀x¬π(x,g), and hence PA −| ¬π(k,g). Therefore, PA 

proves π(k,g) and ¬π(k,g), contradicting the assumed consistency of PA. 

 So there is no k the Gödel number of a proof in PA of the sentence 

G. This means that for any natural number k, Pf(k,g) is false. So, by 

representability, for any k, PA −| ¬π(k,g). And, by the above considerations, 

PA −| ∀xBew(┌¬Bew(x,g)┐). By one application of R-ω (weak) or, 

equivalently, of URefl1, the Gödel sentence ∀x¬π(x,g) follows. 
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6. Conclusions 

 Gödel's famous discovery of the incompleteness phenomenon is still 

the base of some philosophical controversies. Probably the disputes around 

the thesis "meaning is use" and the algorithmic nature of arithmetical 

thinking are the most striking. Both the supporters of the idea that our 

arithmetical understanding outruns any attempt to formalize it and the 

supporters of the idea that our arithmetical understanding is not entirely 

algorithmic base their considerations on Gödel's first incompleteness 

theorem. As we saw in section 1, the logical mechanism connecting both 

views is given by the correspondence between the standard form of Gödel's 

theorem and its Turing version. By its standard form, the Gödelian sentence 

G is not provable in PA (assuming the consistency of PA) but it is 

metamathematically argued as being true, and by its Turing form no sound 

procedure for ascertaining the nonhalting a computation is complete. In both 

cases there are true sentences transcending their algorithmic justification. 

 But in some criticisms of these views, focused on the difference 

between truth and provability, some careless use of "true" tends to blur just 

the distinction they want to make explicit. After all, the key point in these 

arguments and in their criticisms is just the capital distinction between what 

can and cannot be proved in PA. 

 Of course, by Tarski's theorem the formal system of PA cannot 

contain a formula Tr(x) expressing the truth predicate for PA. So although 

many metamathematical assertions contain the word "true", their 

formalization cannot be inserted within PA, even though their usual reading 

re-establishes the use of "true" (as is the case in the two quotations above). 

Then what is really proved within PA is just an implication of the form 

Con(PA)⊃G and nothing more. Neither the conditional "if PA is consistent, 
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then G is true" nor the fact that G is true is provable in PA. Moreover, the 

fact that a metamathematical assertion is formalizable in the language of PA 

does not imply that it is also provable within PA. As we showed in section 

2, the assertion "if PA is consistent, then G is undecidable in PA" is true, 

formalizable in the language of PA but not provable within PA. The same is 

the case with the reflection principles, expressed in the language of PA, i.e. 

without using the word "true". 

 The sections 3 and 4 analyse two licit ways of showing that 

Gödelian sentence G is true. The first is just the Dummett's semantical 

argument, i.e. a metamathematical argument that G is true in the standard 

model of PA. The second is a proof of G in an nonconservative extension of 

PA. This can be given either by using reflection principles containing the 

truth predicate for the language of PA (PA with a Tarskian semantic can 

prove such a reflection), or by using reflection principles without the truth 

predicate. This second route allows a formal proof of G in an extension of 

PA, that mimics Dummett's (or Mendelson's) semantical argument but 

without using "true". Given the fact that the open formula ¬π(x,g), part of 

the Gödelian sentence ∀x¬π(x,g), is a ∆-formula, the minimal extension of 

PA, required by the proof of G, will be the extension of PA with primitive 

recursive R-ω (weak), or equivalently, with Feferman's uniform reflection 

principles restricted to ∆-formulas. 
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