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Abstract: The purpose of this paper is to make a critical analyse 

of the Wittgenstein's argument regarding his rejection of the existence of a 

true but unprovable sentence in PA. The section 1 does make explicit the 

way in which Gödel's first incompleteness theorem is analogous to 

paradoxical constructions (Richard's paradox and the Liar), via Cantor's 

diagonalization (1.1), and a review of proofs of Gödel's theorems (1.2). It 

is argued that Wittgenstein's rejection of Gödel's results is essentially 

based on his finitism (constructivism) conjugated with the thesis that the 

meaning of an expression is given by its use in a calculus (2.1). The 

consequences of this stance are the identification of "true" with "proved" 

and the rejection of the existence of meta-mathematics. These are finally 

responsible for Wittgenstein's rejection, in § 8 of his Remarks..., of the 

existence of a true but not provable sentence in PA (2.2). In the section 3 

we are looking for a sense in which a constructive notion of truth can be 

given. This is considered in terms of Turing computability, but whose 

consequence, concerning Gödel's sentence, is that the idea of constructive 

truth does not coincide with the idea of truth given computationally. 
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Wittgenstein, T-computability, Kleene, constructive truth. 

 

1. Gödelian Incompleteness 

1.1. Cantor, Richard, Liar Sentence and Gödel 

 At the beginning of this paper let us review the content of this 

remarkable discovery of the 20th century. Gödel's sentence G, asserting its 

own unprovability, is a sentence of the form "G is not provable". If the 

system S in view is correct, i.e. it does not prove false sentences, then G is 
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an example of a true but not provable sentence of S. For let us suppose that 

G were false. This implies, according to its own meaning that G is provable, 

contradicting the correctness of S. So G is true. On the other hand, if G were 

provable then it will be false and hence not provable in S (by the correctness 

of S). So G is not provable in S (by reductio). G being true, its negation is 

false, so ¬G is also not provable in S. Therefore G is an example of an 

undecidable sentence of S.  

 As Gödel said, "[t]the analogy of this argument with the Richard 

antinomy leaps to the eye. It is closely related to the "Liar" too; [fn 

omitted]."1 

 Let us see, more closely, in what this analogy consists. First of all, 

the sentence G is of self-referential kind. Its formal counterpart can be 

achieved by using the diagonalization method, due to Cantor.2 He used this 

method in order to prove the non-denumerability of the set of all infinite 

binary sequences, in the following way. If S is an arbitrary set, let us 

consider the two-valued (0 and 1) functions defined over it. Now, suppose 

that, for each Sx ∈ , xf  is such a function. Let g be the function defined by: 

)2(mod1)()( += xfxg x . Then g is not one of the functions xf , with Sx ∈ . 

For if it were then let k be its index, i.e. )()( xfxg k= . But by definition of 

g, the following equation holds, for all values of x: 

)2(mod1)()( += xfxf xk . Let x be k (diagonalization step); then the 

following contradiction is obtained: )2(mod1)()( += kfkf kk . 

 This argument involves the application of each function with index x 

to its own index. 

 From the above result it follows Cantor's Theorem: For any set S, 

)(SPS < . 

 For let S be an arbitrary set and f a function that associates with 

every Sx ∈  a subset Sxf ⊆)( . Now we define the subset *
S  by *

Sx ∈  iff 

)(xfx∉ . From the supposition that there would be a Sz ∈  such that 

                                                
1 K. Gödel [1931], 149. 
2 G. Cantor [1891]. 
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)(* zfS =  a contradiction can be derived. For such an z we have *
Sz ∈  iff 

)(zfz ∉  iff *
Sz ∉ . What this argument shows is that a set cannot be 

equinumerous with its power set. 

 By using the Cantor's diagonalization method Richard3 constructed 

the respective paradox. Let us review this result and its relevance. 

 From any finite alphabet of a natural language one can construct a 

sequence whose members are all finite strings of letters, by using the space 

as a new symbol. Some strings will be, of course, definitions of real 

numbers in (0,1). So we separate them by crossing out all those strings that 

are not definitions of real numbers, and enumerate them in a list E, in 

alphabetical order. Let iu , ,...3,2,1=i  be the number defined by the i
th 

definition in the list E. In this way we obtained all numbers that are defined 

by finite strings of letters, written in a definite order. Hence the set of 

numbers definable by finitely strings of letters is one denumerably infinite. 

But, as Richard says, a contradiction appears in the following way. 

 
We can form a number not belonging to this set. "Let p be the digit in the 

nth decimal place of the nth number of the set E; let us form a number 

having 0 for its integral part and, in nth decimal place, p+1 if p is not 8 or 

9, and 1 otherwise." This number N does not belong to the set E. If it were 

the nth number of the set E, the digit in its nth decimal place would be the 

same as the one in the nth decimal place of that number, which is not the 

case. 

I denote by G the collection of letters between quotation marks. 

The number N is defined by the words of the collection G, that is, by 

finitely many words; hence it should belong to the set E. But we have seen 

that it does not. 

Such is the contradiction.4 

 

 Let us accommodate Richard's description of his paradox to the 

Cantor's reasoning above, used to prove the non-denumerability of all 

                                                
3 J. Richard [1905]. 
4 Citation from van Heijenoort [1967], 143. 
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infinite binary sequences. iu  is the number defined by the ith definition, and 

let )(nfi  be the nth digit of the decimal expansion of iu . If, for example, 3u  

is the number 0.201475 then 7)5(3 =f . Then the number N, according to 

the description (definition) given in the quotation above, is the number 

)...3()2()1(.0 ggg , where 1)()( += nfng n  if 8)( <nfn  and 1)( =ng  

otherwise. Certainly, N differs from all iu , but the definition given in 

quotation marks in Richard's text above (denoted by G) shows that such a 

number can be defined in a natural language (English here). This is the 

paradox. 

 According to Richard, this paradox "in only apparent", for the 

definition of N refers to the set E, "which has not been defined. Hence I 

have to cross it out. The collection G has meaning only if the set E is totally 

defined, and this is not done except by infinitely many words. Therefore 

there is no contradiction."5 

 Actually, the definition of N, i.e. of )(xg , is circular: it appeals to 

the enumeration E in which it is an element. For let us suppose that the 

definition G (of the number N) has the index k in the enumeration E. I.e. 

)()( xfxg k= . But according to its definition, 1)()( += xfxg x . So the 

following equation holds: 1)()( += xfxf xk . For kx =  we get the 

contradiction 1)()( += kfkf kk , by a reasoning similar to Cantor's above.6 

 Now, from this Richard's result, via Cantor's Theorem, the Liar 

Paradox can easily be derived. 

 Let Nat be the set of natural numbers and E an enumeration of all 

definitions of sets of natural numbers. A set S of natural numbers is 

formally definable iff there is a formula α(x), with x free, such that for 

every n holds: 

  Sn∈  iff α(n) is true, 

                                                
5 van Heijenoort [1967], 143. 
6 Today the paradox is taken as solved either by introducing the distinction of language 
levels (i.e. the definition of g(x) does belong to the meta-language) or by considering the 
partial functions (i.e. in the above diagonalization step, x = k, the function fk(k) is 
undefined, and the contradiction disappears). 
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where n is the numeral for n. If Tr(x) is the formula expressing the truth 

predicate, then the above (meta-) equivalence becomes 

 1. Sn∈  iff Tr(┌α(n)┐), respective Sn∉  iff ¬Tr(┌α(n)┐), 

where ┌α(n)┐ is the name for the formula α(n). α(n) is the fixed point of the 

formula Tr(x). By the Diagonal Lemma the following equivalence holds: 

 2. α(n)≡ Tr(┌α(n)┐). 

 Hence Sn∈  iff α(n). 

 Let us consider *
E  an enumeration of all formulas of the form α(x), 

corresponding to the definitions in E. Let us define the set K thus: 

  Kn∈  iff   "n does not belong to the set defined  

   by the formula with the index n" 

that is, 

 3. Kn∈  iff ¬Tr(┌αn(n)┐). 

If αk(x) is the formula defining K, then for all n: 

  Kn∈  iff αk(n). But αk(n)≡¬Tr(┌αk(n)┐), by 2, and 

Tr(┌αk(n)┐)≡¬Tr(┌αn(n)┐), by 3. From where, by setting kn = , the Liar 

Paradox follows: 

 4. Tr(┌αk(k)┐)≡¬Tr(┌αk(k)┐), 

or, by 2 

 5. αk(k)≡¬Tr(┌αk(k)┐), 

just the Liar sentence. 

 What shows the above argument is that the set K is not definable by 

any formula in *
E . 

 As we saw above, the semantical predicates "definable" and "true" 

lead to paradoxical constructions. Gödel's sentences G replaces the 

predicate "true" with the syntactical predicate "provable", obtaining a 

sentence asserting its own unprovability: G is not provable. In terms of the 

above symbolism, 5 becomes 

 5*. αk(k)≡¬Bew(┌αk(k)┐), 

where Bew(x) is the formula expressing the provability predicate in a formal 

language. By a simple reasoning we can see that the assumption of 

provability of αk(k) or of its negation leads to a contradiction. But in that 
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case the conclusion is: neither G, i.e. the sentence αk(k), nor its negation is 

provable. Therefore, G is true but not provable in S. 

 

1.2. Gödel's Incompleteness Theorems 

 The formulation and proof of these theorems are based on the two 

fundamental facts: a) the arithmetization of syntax, a process by which the 

sentences and proofs about the system PA (of Peano Arithmetic) are 

"translated" in recursive functions and relations, and b) the representability 

and expressibility of these functions, respective relations in formal PA. 

 By using this idea of arithmetization Gödel defines the following 

relations: 

  yGlxxlxBwxBy == )]([&)( , 

meaning that x is a proof ( )(xBw ) whose last formula is y. I.e. "xBy" means 

that x is a proof of y. It is usually rendered by ),( yxPf . 

  yyBxxBew ∃≡)( , 

meaning that x is a provable formula.7 

 By the diagonalization of a formula α(x) containing x free, is meant 

the formula obtained from α(x) by substituting the numeral of the Gödel 

number of α(x) for x in α, i.e. α(n), where n is the respective numeral.8 

 Correspondingly, a diagonal function δ(n) can be defined in the 

following way: if n is the Gödel number of a formula α(x), with x free, then 

δ(n) is the Gödel number of its diagonalization, α(n). 

 If by Sub(y,z,w) is meant "Gödel number of the formula resulting 

from the formula with Gödel number y by substituting the term with Gödel 

number z for all free occurrences of the variable with Gödel number w", 

then δ(n) can be defined as: 

  )2),(,()( anNumnSubn =δ , 

where )(nNum  is the Gödel number of the numeral for n and a2  is the 

Gödel number of the free variable of the formula with Gödel number n. 

                                                
7 The definitions 45 and 46, respectively, in Gödel's [1931] paper. 
8 The diagonalization of α(x) can also be rendered as ∃x(x=┌α┐∧α), where ┌α┐ is the name 
(numeral of Gödel number) of α. 
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 Definition 1. A number-theoretic relation ),...,( 1 nxxR  is expressible 

in PA iff there is a formula α(x1,...,xn) of PA with n free variables such that 

for any natural numbers nkk ,...,1  the following hold: 

 1. If ),...,( 1 nkkR  is true, then −| α(k1,...,kn). 

 2. If ),...,( 1 nkkR  is false, then −| α(k1,...,kn). 

 Definition 2. The function )(xf  is representable in PA if there is a 

formula α(x,y), with x, y free, such that whenever 21)( kkf =  the following 

holds: PA −| ∀y(α(k1,y)≡y=k2). 

 Finally, the following facts are theorems of formal number theory: 

 Fact 1. A number-theoretic relation ),...,( 1 nxxR  is recursive iff it is 

expressible in PA. 

 Fact 2. A number-theoretic relation ),...,( 1 nxxR  is recursive iff it is 

representable in PA. 

 Let now ),( ykR  be the following relation: "k is the Gödel number of 

a formula α(x) containing x free and y is the Gödel number of a proof in PA 

of its diagonalization, α(k). 

 This relation is primitive recursive, for it is equivalent to the 

expression: )2),(,(,()2,()( aa kNumkSubyPfkFrkForm ∧∧ , where all 

predicates occurring in it: )( yForm : "y is the Gödel number of a formula", 

)2,( ayFr : "the formula with Gödel number y contains the free variable with 

Gödel number a2 ", ),( xyPf : "y is the Gödel number of a proof of the 

formula with Gödel number x", )( yNum : "the Gödel number of the numeral 

for y (i.e. y) are primitive recursive, and the function ),,( zyxSub : "the 

Gödel number of the expression resulting from the expression with Gödel 

number x by substituting the term with Gödel number y for all free 

occurrences of the variable with Gödel number z" is primitive recursive. 

 Being primitive recursive, ),( ykR  is expressible in PA by a formula 

with two free variables, say β(x,y). That is, the conditionals 1 and 2 above 

hold. 
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 Let now F be the formula ∀y¬β(x,y). Since β expresses in PA the 

relation R, its intuitive meaning is: "For all y, y is not a (Gödel number of a) 

proof of the diagonalization of the formula (with Gödel number) x", or 

simply, "the diagonalization of x is not provable". Let k be the Gödel 

number of F. Let now construct the formula G: ∀y¬β(k,y), i.e. the 

diagonalization of F. Its intuitive meaning is: "the diagonalization of k is not 

provable". But the diagonalization of k is just the formula G. Therefore, G is 

a self-referential construction, asserting its own unprovability. 

 

Gödel's first incompleteness theorem 

 1. If PA is consistent, then G is not provable. 

 2. If PA is ω-consistent,9 then ¬G is not provable. 

 Proof. 1 (Reductio). Suppose that PA is consistent and G is provable 

in PA. Hence there is a number n the Gödel number of a proof of G. This 

means that ),( nkR  holds. By expressibility of R in PA by β it follows that 

β(k,n) is provable in PA. But from the supposition of the provability of G: 

∀y¬β(k,y) results that ¬β(k,n) is also provable, contradicting the 

consistency of PA. 

 2. (Reductio). Suppose that PA is ω-consistent and ¬G: ∃yβ(k,y) is 

provable. PA is consistent (it follows from ω-consistency). So there is no m 

such that m is the Gödel number of a proof of G in PA. That means that 

),( mkR  is false for every m, and consequently ¬β(k,m) is provable for 

every m, and this contradicts the assumption of ω-consistency of PA. 

 Therefore this formula G is an example of an undecidable sentence 

of PA. How do we know that G is true? 

 By considering the meaning of R and the expressibility of R in PA 

by the formula β, the intuitive meaning of G is that there is no number y 

such that y is the Gödel number of a proof of G in PA, i.e. ),( ykR  is false 

for every y, equivalent G asserts its own unprovability. By Gödel's theorem 

1, if PA is consistent, then G is really unprovable. So G is true. 

                                                
9 A system S is ω-consistent iff for every formula α(x) of S if α(n) is provable for every n, 
then ∃x¬α(x) is not provable in S. 
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Gödel's second incompleteness theorem 

 As we saw above, the relation ),( xyPf  means "y is a proof of x". 

Now let c be the Gödel number of the formula 0 = 1.10 If ),( xyPf  is 

expressible in PA by the formula γ(y,x), then the formula ∀y¬γ(y,c) 

expresses the consistency of PA. Let Con be this formula. 

 

Gödel's second incompleteness theorem 

 If PA is consistent, then PA /|− Con. 

I.e. if PA is a consistent theory, then the formula Con, expressing its 

consistency, is not provable in PA. 

 The proof of this theorem is simple. First, the equivalence ConG ≡  

is provable in PA, for GCon ⊃  is just the formalization of the first 

incompleteness theorem, where G is the undecidable sentence ∀y¬β(k,y). 

Second, the converse ConG ⊃  is trivial, since if there is a sentence not 

provable in PA, then PA does not prove the sentence 0 = 1, i.e. PA is 

consistent. By this equivalence ConG ≡ , the second incompleteness 

theorem follows from the first. 

 

Gödel's first incomplenetess theorem (via Diagonal Lemma) 

 Diagonal Lemma. If T is a theory extending Q (Robinson), then for 

any formula α(x) there is a sentence S such that T −| S≡α(s), where s is the 

Gödel number of S. 

 Now, let γ(y,x) be the above formula expressing the relation 

),( xyPf  in PA. Let α(x) from Diagonal Lemma be the formula ∀y¬γ(y,x) 

containing x free. According to this lemma, there is a sentence G such that: 

  PA −| G≡∀y¬γ(y,g), 

where g is the Gödel number of Gödel sentence G. 

 A sentence is provable in PA iff there exists a proof of it. Formally, 

the construction ∃yγ(y,x) expresses the existence of a proof of the formula 

whose Gödel number is x, i.e. this formula is provable. Let Bew(x), 

                                                
10 Actually, the negation of any theorem can be set instead of this formula. 
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equivalent to ∃yγ(y,x), be the formula expressing the provability predicate 

for PA. So, the provable equivalence by Diagonal Lemma becomes 

G≡¬Bew(┌G
┐), where ┌G

┐ is the formal name of G. 

 The predicate Bew(x) does satisfy the HBL11-derivability conditions: 

1. If −| S, then −| Bew(┌S
┐), 2. −| Bew(┌(S⊃T)┐)⊃(Bew(┌S

┐)⊃Bew(┌T
┐)) and 

3. −| Bew(┌S
┐)⊃Bew(┌Bew(┌S

┐)┐), for all sentences S and T of PA. 

 An important means for the study of provability is modal logic, in 

the form of the axiomatic system GL. The correlation between arithmetic 

and modal logic is based on a metalinguistic translation of modal sentences 

in the language of PA. A translation (or realization) is a function (*) that 

associates to each atomic sentence of the modal system GL a sentence of 

PA, that commutes with the boolean connectives and (� α)*=Bew(α*). By 

the following theorem the modal system GL is proved to be arithmetical 

complete. 

 Solovay's theorem. GL −| α iff for every arithmetic translation (*) 

PA −| α*.12 

 Now, the proof of first incompleteness theorem is the following. By 

diagonal lemma 

  1. PA −| G≡¬Bew(┌G
┐) 

  2. Supp PA −| G. 

  3. PA −| Bew(┌G
┐), by first derivability condition. 

  4. PA −| ¬G, by (1) and (3). 

So PA is inconsistent. Therefore PA /|− G. 

  1. Supp PA −| ¬G. 

  2. PA −| Bew(┌¬G
┐), by first derivability condition. 

  3. PA −| Bew(┌G
┐), by diag. lemma. 

  4. PA −| Bew(┌G
┐)∧Bew(┌¬G

┐). 

  5. GL −| (� p∧� ¬p)⊃� ⊥. 

  6. PA −| ((� p∧� ¬p)⊃� ⊥)*, by Solovay's theorem. 

                                                
11 Hilbert-Bernays-Löb. 
12 R. Solovay [1976]. 
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  7. PA −| Bew(┌⊥┐), 4, 6. 

But if PA /|−  Bew(┌⊥┐), i.e. if PA is consistent, then PA /|− ¬G. So G is 

undecidable in PA. 

 

2. Wittgenstein's Remarks... 

2.1. Wittgenstein's finitism 

 By Gödel's first theorem, if PA is consistent then there is a sentence 

G true but not provable in PA. In his Appendix on Gödel's theorem,13 

Wittgenstein rejected this important result. According to his anti-

descriptivism, arithmetic does not describe any kind of reality, so the idea 

that arithmetical truth transcends the formal derivability in an axiomatic 

system must be rejected. And with it the mathematical Platonism associated 

with Gödel's theorems must also be rejected. Let us see closely the main 

features of Wittgenstein's finitism. 

 On Wittgenstein's view the meaning of an expression is given by its 

use. As regards a mathematical proposition, it is meaningful only within a 

given calculus and where there is an effective procedure whose application 

allows us to decide it.14 So the universal or existential quantified 

propositions, ∀xα(x) and ∃xα(x), with α(x) a decidable predicate, are 

meaningful only if the quantifiers are bounded, for only in these cases the 

respective proposition is algoritmically decidable. Since "[e]very 

proposition in mathematics must belong to a calculus of mathematics"15 it is 

either provable or refutable. So the tertium non datur holds for any such a 

proposition. However, from the fact that tertium does apply to any 

meaningful mathematical proposition we cannot derive that such a 

proposition is either true or false. For on his anti-descriptivist view, the 

mathematics is an invention, not a discovery, hence by using a deduction 

procedure we make the respective proposition either true or false. In 

Wittgenstein's terms "true" is equated to "proved"/"provable" and "false" is 

                                                
13 L. Wittgenstein [1964], Part I, Appendix I. 
14 L. Wittgenstein [1975] § 152; [1974], 451: "[i]f there is no method provided for deciding 
whether the proposition is true or false, then it is senseless". 
15 L. Wittgenstein [1974], 376. 
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equivalent to "refuted". So :true" or "false" have a meaning with reference 

to mathematical proposition, only in a formal (syntactical) sense.16 

 

2.2. The argument from Remarks... 

 Since a true proposition is a proved proposition " "p" is true" is just 

the assertion of "p".17 So a proposition can be asserted in Russell's system 

only "at the end of one of his proofs, or as a 'fundamental law' (Pp)".18 If 

this is the case, then the following equivalences hold: "p" is 

asserted = p ="p" is proved. And, consequently, "a true but unprovable 

proposition" is just a contradiction in terms. How can this conclusion be 

motivated? Essentially, in the following way. 

 On the one side, this idea has to do with Wittgenstein's rejection of 

Hilbertian program of meta-mathematics. For a mathematical proposition is 

meaningful iff it is algorithmically decidable and its decidability is related 

to a formal system, say Russell's. And "[u]nderstanding p means 

understanding its system. If p appears to go over from one system into 

another, then p has, in reality, changed its sense".19 On the other side, the 

idea that meaning of an expression is determined by its use enters the 

picture. So the above conclusion is the result of Wittgenstein's rejection of 

meta-mathematics, as a direct consequence of his strict finitism, conjugated 

with the thesis meaning is use. Hence it is not the case that the same 

proposition p be expressible in a system and undecidable in that system, but 

provable (and then true) in a different system (in the metatheory). For "[...] a 

proposition which cannot be proved in Russell's system is "true" or "false" 

in a different sense from a proposition of Principia Mathematica".20 

 An additional feature of Wittgenstein's interpretation of Gödel's 

theorem is given in his § 8 of Remarks... 

 

                                                
16 In contrast with the genuine contingent propositions which are true/false by virtue of 
correspondence to facts (comp. Tractatus, 4.25, 4.062). 
17 Cf. [1964], § 6, Appendix I: "For what does a proposition's 'being true' mean? 'p' is 
true = p. (That is the answer)." 
18 Cf. § 6. 
19 L. Wittgenstein [1975], § 3. 
20 L. Wittgenstein [1964] Appendix I, § 7. 



 33 

I imagine someone asking my advice; he says: "I have constructed a 

proposition (I will use 'P' to designate it) in Russell's symbolism, and by 

means of certain definitions and transformations it can be so interpreted 

that it says: 'P is not provable in Russell's system'. Must I not say that this 

proposition on the one hand is true, and on the other hand is unprovable? 

For suppose it were false; then it is true that it is provable. And that surely 

cannot be! And if it is proved, then it is proved that it is not provable. Thus 

it can only be true, but unprovable." 

Just as we ask: " 'provable' in what system"?, so we must also ask: " 'true' 

in what system?" 'True in Russell's system' means as was said: proved in 

Russell's system; and 'false in Russell's system' means: the opposite has 

been proved in Russell's system. – Now what does your "suppose it is 

false" mean? In the Russell sense it means 'suppose the opposite is proved 

in Russell's system'; if that is your assumption, you will now presumably 

give up the interpretation that it is unprovable. And by 'this interpretation' I 

understand the translation into this English sentence. – If you assume that 

the proposition is provable in Russell's system, that means it is true in the 

Russell sense, and the interpretation "P is not provable" again has to be 

given up. If you assume that the proposition is true in the Russell sense, the 

same thing follows. Further: if the proposition is supposed to be false in 

some other than the Russell sense, then it does not contradict this for it to 

be proved in Russell's system. (What is called "losing" in chess may 

constitute winning in another game.) 

 

 The first part of this paragraph is somehow the "official" 

argumentation of the existence of a true but unprovable proposition in 

Russell's system. In both cases the inference made by his interlocutor, is by 

reductio. The argument as such is concise, so we think what Wittgenstein 

intended to argue is the following. The ingredients of proof are 

1. Russell's system is correct, i.e. it does not prove false propositions. 

2. The proposition G ("P" in his notation) is: "G is unprovable". 

What is argued by reductio is 

 a) G is true, for if it were false, then according to its meaning G will 

be provable, contradicting 1. This is why "that surely cannot be". 
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 b) G is unprovable. For if it were provable, by 2 G is false and by 1 

it is not provable. Hence G is not provable (by reductio). Then by 2 G is 

true. 

 Being true, its negation, ¬G, is false and also unprovable. This is 

just an intuitive account of the reasoning behind Gödel's construction. 

 The second part of this paragraph is Wittgenstein's reply to the 

above argument. Again the identifications "true" = "proved" and "false" = 

"the opposite is proved" arise. But the novelty consists in the fact that with 

these identifications the interpretation of G as "G is unprovable" must be 

given up; that is, its interpretation ("translation") into English language must 

be cut out. Of course, Wittgenstein's reasoning is clear: if G is true and 

"true" means provable, then if G is provable then it is not unprovable. So the 

interpretation of G as "G is unprovable" cannot be kept. So the things are 

simple: under the above identifications "true" and "unprovable" are not 

compatible. Also "true and unprovable" is again a contradiction in terms. 

 What is the source of Wittgenstein's rejection of the existence of a 

true but not provable proposition in Russell's system? 

 I think that by "if that is your assumption", with reference to the 

above identification, Wittgenstein misinterprets the Gödel's result given by 

his first theorem, even in the intuitive fashion given above. For the second 

part of his § 8 is not a reply to what is given in the first part. If the first part 

is the Gödel's reasoning, then by his first theorem: If Russell's system S is 

consistent, then G is not provable in S. So by this theorem "true" and 

"provable" do not mean the same thing. Hence Wittgenstein's rejection of 

the interpretation of G as "G is unprovable" is not rejected by Gödel's result, 

but by Wittgenstein's identification of "true" with "provable". 

 Besides, the truth of the proposition G is argued via the 

arithmetization of the relation R and its expressibility in PA by a formula β. 

So by its very construction the intuitive meaning of G cannot be other than 

"G is not provable".21 Of course, the argument that G is true cannot be 

formalized in PA. If "true" is equated with "proof" and the distinction 

                                                
21 Cf. 1.2 above. 
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"inside" – "outside" with reference to PA is omitted, then the results are just 

those encountered in this § 8 of Wittgenstein's Remarks. 

 The same omission is responsible for the argument given in § 10 of 

Appendix I: 

 
"But surely P cannot be provable, for, supposing it were proved, then the 

proposition that it is not provable would be proved." But if this were now 

proved, or if I believed – perhaps through an error – that I had proved it, 

why should I not let the proof stand and say I must withdraw my 

interpretation "unprovable"? 

 

 Here, of course, Wittgenstein is right in asserting that the 

interpretation of G as "G is unprovable" is not compatible with the assertion 

of provability of G. But this incompatibility only holds with reference to the 

same language. As such it is perfectly compatible with Gödel's 

incompleteness theorem and under the assumptions of this theorem. 

 In the same ton § 11 of Appendix I says: 

 
Let us suppose I prove the unprovability (in Russell's system) of P; then by 

this proof I have proved P. Now if this proof were one in Russell's system 

– I should in that case have proved at once that it belonged and did not 

belong to Russell's system. – That is what comes of making up such 

sentences. – But there is a contradiction here! – Well, then there is a 

contradiction here. Does it do any harm here? 

 

 Here the proof of the unprovability of G, as above, does generate an 

inconsistency in the form that we proved at once that "[G] belonged and did 

not belong to Russell's system". True, the proof is this: 

 1. G≡¬Bew(┌G
┐), by the construction of G or by Diagonal Lemma. 

 2. −| G; assumption. 

 3. −| Bew(┌G
┐); by first deriv. condition. 

 4. −| ¬G; 1, 3. 

 5. −| ¬Bew(┌G
┐); 1, 2. 
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2 and 4 say that the system is inconsistent, 3 and 5 that G belongs and does 

not belong to the respective system. Is this result relevant in any way? In 

Gödel's terms it means, simply, that G is not provable in S. In Wittgenstein's 

terms it means that the idea "proof of an unprovable proposition" is 

inconsistent. Both answers are right. But if we decide to not operate with 

inconsistencies, then only the Gödel's proposal is the right one. Simply! 

 On Rodyck's view22 Wittgenstein's mistake is just the idea that 

Gödel's proof does not admit the interpretation in English language of G as 

"G is not provable in Russell's system" (§ 8). For Gödel's result is just a 

number-theoretic one and does not depend on such a natural language 

translation. Of course, Rodyck is right in saying that "an actual proof of [G] 

would enable us to calculate the relevant Gödel numbers and thereby arrive 

at ["¬G"] by existential generalization".23 Detailed, the argument is this: G 

is the proposition ∀y¬β(k,y), i.e. the diagonalization of the formula with 

Gödel number k: ∀y¬β(x,y), and β(x,y) formally expresses the relation 

R(x,y): "y is a proof of the diagonalization of x" (cf. 1.2 above). Now if G 

were provable, then there would be an n the Gödel number of its proof (and 

n can be effectively calculated). So R(k,n) holds and, consequently, β(k,n) 

would be provable in PA. From where ∃yβ(k,y) would also be provable (by 

existential generalization), i.e. ¬G would be provable. 

 Of course, this is a number-theoretic result. So the proof of the 

unprovability of G is a mathematical fact. But if we want to go beyond the 

formal apparatus implied in Gödel's construction, then metamathematically 

what G is supposed to mean? All we have to do is to go back, via 

arithmetization, to the intuitive relation corresponding to G and then to see 

that it is just an (self-referential) assertion of the form "I am not provable". 

So we ask the following question: can we retain the mathematical facts 

related to Gödel's results and reject entirely as irrelevant the interpretation 

                                                
22 V. Rodyck [1999], 182-183. 
23 V. Rodyck [1999], 182. 
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in the natural language? By considerations of 1.1 above, this is not the 

case.24 

 Then how do we explain Wittgenstein's assertion that by Gödel's 

theorem G cannot be translated in English as "G is unprovable"? Again the 

answer is simple. This assertion is part of the same paragraph 8 and occurs 

immediately after the identification of "truth" with "proved". By 

suppressing the distinction object-language / meta-language, this 

identification leads directly to a contradiction in terms. Or, by keeping this 

distinction and the supposition of the consistency of Russell's system, it 

follows that "truth" and "provable" cannot be equated. So two very different 

conceptions about mathematics confront each other: the mathematics as 

strictly a syntactic affaire (Wittgenstein's) and mathematics as 

syntax + semantics (Gödel's). 

 

3. Truth à la Tarski vs. constructive truth 

 In his seminal paper Tarski25 defines the concept of truth in 

formalized language via satisfaction relation. Let ),...,( 1 nxxR  be an atomic 

formula of the LP (the language of first-order predicate logic). Let 

〉〈= iDM ,  be a model of LP. Let µ be an assignment of n1 x,...,x  in D. 

 Definition 1. )x,...,R(x n1  is true in M and an assignment µ in M iff 

iRx,...,x n1 ∈〉〈 µµ . 

 This means that the formula R is true in M and µ iff the sequence of 

n elements of D are in the relation assigned to R by the interpretation i of M. 

 The truth of non-atomic formulas, resulting by applications of 

propositional connectives, in M and an assignment µ in M commutes with 

these connectives. 

                                                
24 Moreover, the English expression "G is unprovable", has a perfectly formal 
correspondent: ¬ Bew(┌G

┐). By Diagonal Lemma G≡¬ Bew(┌G
┐) is provable. Then G says 

about itself: "I am not provable". 
25 Cf. A. Tarski [1933]. 
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 Definition 2. )x,...,x(Rx n1i∀  is true in M and an assignment µ in 

M iff R is true in M and any assignment ν ix -variant of µ. (ν is ix -variant 

of µ if it differs from µ in at most the assignment made to ix ). 

 Definition 3. )x,...,R(x n1  is true in M iff R is true in any 

assignment µ in M. 

 Definition 4. )x,...,R(xx n1i∀  is true in M iff R is true in any 

assigment µ in M. 

 If the considered language PAL  is that of Reano Arithmetic (PA), 

then if )x,R(x 21  is the formula 21 xx < , then iR  is the arithmetic 

(intuitive) relation µ
2

µ
1 xx <  and it is true in the standard model 

⋅〉+=〈= ,,',,0,NM  iff the number µ
1x  is less than the number µ

2x . 

 If "Snow is white" is the formal name for the respective sentence 

then, according to Definition 1, "Snow is white" is true iff Snow is white.26 

 To be sure, such a definition of truth is not constructive, it does not 

say anything about the ways the truth of a sentence can be verified. What 

about a constructive one? 

 At the beginning let us review some fundamental facts of recursion 

theory. 

 First of all, any recursive predicate R is effectively decidable. This is 

so because any recursive function f is effectively computable. For if E is a 

system of equations defining it recursively,27 then the value of f can be 

found for any values of its arguments. The computability of f is given by the 

following theorem. 

 Normal form theorem.
28 If ),...,( 1 nxxf  )0( ≥n  is a recursive 

function a number e can be found such that: 

  1. ),,...,,())()...(( 11 yxxeTEyxx nnn  

  2. )),,...,,((),...,( 11 yxxeyTUxxf nnn µ= , 

                                                
26 This is the sense in which Tarski defines satisfiability of an atomic formula by an 
assigment s. 
27 Such a system E always exists (cf. Kleene [1964], § 54, Th. II and § 55. 
28 Cf. Kleene [1964], Th. IX. 
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where ),,...,,( 1 yxxzT nn  is a primitive recursive predicate and )(yU  is a 

primitive recursion function.29 

 In this theorem e is the Gödel number of E and it is also called the 

Gödel number of f. If an e is given such that 1 and 2 in the theorem above 

hold, then the recursive function f is effectively given. 

 Secondly, if ),...,( 1 nxxR  is a predicate, then its characteristic 

function RC  is defined as follows: 

  




=
falseis),...,(if1

trueis),...,(if0
),...,(

1

1
1

n

n
nR

xxR

xxR
xxC  

 The following equivalences hold: 

  ),...,( 1 nxxR  is recursive iff ),...,( 1 nR xxC  is recursive iff  

  ),...,( 1 nR xxC  is Turing-computable. 

 Therefore, if ),...,( 1 nxxR  is a recursive predicate then for any 

assignment ),...,( 1 nkk=µ  to nxx ,...,1 , its logical value, true or false, can be 

determined. And this is possible by computing the value of its characteristic 

function ),...,( 1 nR xxC  and see whether this is 0 or 1. 

 In what follows we adopt the following notation: if ),...,( 1 nxxR  is a 

recursive predicate then by " ),...,( 1 nxxR  is 1
T -computable on the 

assignment 〉〈 nkk ,...,1 " we understand that its characteristic function RC  

takes the value 0 for this assignment, respectively R is true in this 

assignment.30 

 

A constructive notion of truth 

 If by M we mean the standard model of PA, let Constr be the model 

〉⋅+=〈 ',,,,0,N , with the same domain N, but in which the satisfaction (i.e. 

the truth in an assignment) and the truth are defined in the following way. 

                                                
29 (x) and (Ex) are Kleene's notation for the "for all" and "there is", respectively, in their 
intuitive use, and Tn is Kleene's "T-predicate". 
30 Correspondingly, T0-computable means that R is false for this assignment. 
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 Now let )x,...,R(x n1  be a formula of PA containing the free 

variables n1 x,...,x . 

 Definition 1
*
. )x,...,R(x n1  is true in Constr and an assignment µ in 

Constr iff iRx,...,x µ
n

µ
1 ∈〉〈 , i.e., iff the arithmetical relation ),...,( 1 nxxR  is 

1
T -computable on the assignment µ.31 

 Definition 2
*
. )x,...,R(xx n1i∀  is true in Constr and an assignment 

µ in Constr iff the arithmetical relation ),...,( 1 nxxR  is 1
T -computable for 

any assignment ν ix -variant of µ. 

 Definition 3
*
. )x,...,R(x n1  is true in Constr iff ),...,( 1 nxxR  is 1

T -

computable on any assignment µ in Constr. 

 Definition 4
*
. )x,...,R(xx n1i∀  is true in Constr iff ),...,( 1 nxxR  is 

1
T -computable on any assignment µ in Constr. 

 If the formulas considered are the axioms of PA, then if an axiom is 

true in Constr, then the respective arithmetical relation is 1
T -computable. 

Similarly, it can be argued that the inference rules, modus ponens and 

Generalization (Gen), preserve the truth in Constr. 

 

The Gödel's undecidable sentence G and Constr 

 As we saw above, the sentence G is a universally quantified formula 

∀y¬β(k,y), where k is the Gödel number of the formula ∀y¬β(x,y), with β 

decidable. 

 In its original form32 the undecidable sentence 17Gen r is the 

following construction. 

 Gödel defines the relation ),( yxQ  as )( yxBδ , i.e. Q means: "x is not 

a proof of the diagonalization of the formula with Gödel number y". This is 

a recursive relation, for it is defined by using the (primitive) recursive 

relation xBy ("x is a proof of y") and the (primitive) recursive substitution 

                                                
31 This means that if µ is the assignment (k1,...,kn) then R(k1,...,kn) is T1-computable on this 
µ. 
32 Cf. K. Gödel [1931], 175. 
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function (implied in defining the diagonalization of a formula33). Now, if 

y)q(x,  is the formula expressing it in PA, whose free variables have the 

Gödel numbers 17 and 19,34 then 17Gen q is the formula y)xq(x,∀ , whose 

Gödel number is p. Further on, the diagonalization of this formula is 

∀xq(x,p), i.e. 17Gen r in Gödel's notation (where r is the Gödel number of 

q(x,p)). 

 The intuitive meaning of the formula ∀xq(x,p) is therefore the 

sentence asserting that the formula resulting by the diagonalization of the 

formula whose Gödel number is p, i.e., just this formula, is not provable in 

PA. This formula is a self-referential construction. Accordingly, the formula 

q(x,p) is the formal counterpart of Q(x,p). In our notation G is the formula 

∀y¬β(k,y) and therefore ¬β(k,y) replaces q(x,p) with the same intuitive 

meaning. 

 As we mentioned above (sec. 1.2), by Solovay's theorem there is a 

close relationship between the modal system GL and Peano Arithmetic 

(arithmetical completeness of GL). But there is also a correspondence 

between the provability of a formula in PA and its computability version. 

 
Classically, there are two equivalent ways to look at the mathematical 

notion of proof: logical, as a finite sequence of sentences strictly obeying 

some axioms and inference rules, and computational, as a specific type of 

computation. Indeed, from a proof given as a sequence of sentences one 

can easily construct a Turing-machine producing that sequence as the 

result of some finite computation and, conversely, given a machine 

computing a proof we can just point all sentences produced during the 

computation and arrange them into a sequence.35 

 

Let Alg be this algorithmic completeness of PA: 

  Alg. PA −| R iff R is 1
T -computable on any n. 

 As we know, Gödel's sentence G: ∀y¬β(k,y) is a sentence of the 

form ∀xR(x) such that if PA is consistent, then 

                                                
33 Comp. sect. 1.2. 
34 Gödel refers to this formula by using its Gödel number q. 
35 C. Calude; E. Calude, S. Marcus [2001], 13. 
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  1. PA /|− ∀xR(x). 

 But, as Göel showed, all the sentences R(n) are provable in PA, that 

is 

  2. PA −| R(n), for every natural number n.36 

And by definitions 1*-4* above we have 

 Def
*
. ∀xR(x) is true in Constr iff R(x) is true in Constr iff the 

arithmetical relation R(x) is 1
T -computable on any n. 

 We add a fundamental fact about recursiveness: 

 Eq. The class of recursive functions and the class of T-computable 

functions are coextensive.37 

And, correspondingly, R is a recursive relation iff RC  is recursive iff RC  is 

T-computable also holds. 

 Now, by considering Alg. 1, 2, Def* and Eq the following hold. 

 a) A universal quantified sentence ∀xR(x) is constructively true iff 

for any n a constructive proof of R(n) can be accomplished. So the Gödel 

sentence is constructively true, by Def* and Alg. 

 We have to note that this result, regarding Gödel's sentence, does not 

contrast with the non-constructive definition of a sentence ∀xR(x) (given in 

Definition 4). For the Gödel sentence G this non-constructive meaning of 

"∀" also holds. Actually someone who endorses Def* will also endorse 

Definition 4 (but not reverse!). That this is the case results from the fact that 

under the assumption of PA-consistency all sentences R(n), being provable, 

are true. For let us suppose that there is an m such that R(m) though 

provable is false. In our notation the formula R(m) is just the formula 

¬β(k,m), whose intuitive meaning is "m is not a proof of G". Being false, 

β(k,m) is true, that means that "m is a proof of G". So there exists a proof in 

PA of the sentence G (and, consequently, of the consistency of PA, by 

Gödel's second theorem). 

                                                
36 Comp. sect. 1.2, Proof 2 of Gödel's first incompleteness theorem. 
37 More generally, the equivalence holds between the following notions: "λ-definability" 
and "general recursiveness" (proved in Kleene [1936] and Church [1936]), "λ-definability" 
and "Turing computability" (proved in Turing [1937]). 
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 b) G is not provable in PA, by Th. Gödel 1. So G, equivalently R(x), 

and therefore R(x) is not 1
T -computable for any value n of x (by Alg). This 

is due to the fact that R(x) is a Halting-type relation. 

 Indeed, as we said above, R(x) is the formula ¬β(k,y), whose 

intuitive meaning is "y is not a proof of the diagonalization of k".38 Let 

),(* ykR  be this relation.39 This is a recursive relation and, by Eq, it is T-

computable. 

 But ),(* ykR  is circular, for the diagonalization of the formula 

whose Gödel number is k is just the formula G: ∀y¬β(k,y). So the Gödel 

number of G is one of the values of y in ),(* ykR . Hence the domain of the 

relation ),(* ykR  does include the Gödel number of the formula G.40 

 c) G is constructively true. This fact results just by the Gödel's 

argument used in proof of his theorem. For by first incompleteness theorem 

G is not provable. So for any n, n is not a proof in PA of the sentence G. 

And that means that PA −| ¬β(k,0), PA −| ¬β(k,1), PA −| ¬β(k,2),... For a 

given n, let nm  be the Gödel number of the formula ¬β(k,n). By definition, 

if PA −| ¬β(k,n) then there is a proof of ¬β(k,n) whose Gödel number is nd . 

So the following relation holds: nn md β , where xBy is a primitive recursive 

relation "x is a proof of y".41 And this holds for any n. Hence nn md β  is 1
T -

computable (by Eq). And this means that G is true in Constr (by Def*). 

 What b) and c) show is the following fact: "True in Constr" and " 1
T -

computability" do not coincide. 

 d) Being constructively true, for Gödel's sentence G tertium non 

datur holds. So ¬G is a false sentence. But this also holds for G in the 

                                                
38 I.e. it is the complement of our relation R(k,y) in sect. 1.2. 
39 In Gödel's notation it is Q(x,p), defined as )( pxβδ  and expressed in PA by the formula 

q(x,p). 
40 Therefore R* implicitly refers to itself, a fact resulting just from its definition. In terms of 
T-computability, this means that there is an n such that the Turing machine computing R* 
does not halt. 
41 In our notation it is the relation "Pf" (cf. sect. 1.2). 
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standard model M. For as we have seen, the falsity of G would mean the 

truth of its negation, ∃yB(k,y), i.e. G would be provable in PA, contradicting 

Gödel's first incompleteness theorem. 

 

Conclusion 

 Gödel's construction of an undecidable sentence G is based on the 

Cantor's idea of diagonalization. Essentially, this idea is the binder between 

Gödel's results and paradoxical construction. As we showed in section 1 by 

using the diagonalization Richard constructed the respective paradox, from 

which the Liar paradox can easily be derived. Finally, by replacing the 

semantic notion "true" in the latter with the syntactic notion "provable" the 

Gödel sentence G, asserting its own unprovability, follows. 

 By Gödel's theorems there is an asymmetry between the syntax of a 

language and its semantics, respective the truth of a sentence is not always 

identical to its proof. In Gödel's terms if PA is ω-consistent then G is not 

provable in PA. But G is true in the standard model M of PA. How do we 

decide that G is true? The answer is: by interpreting it intuitively. As we 

saw, the meaning of the sentence G: ∀y¬β(k,y), is that it is not provable in 

PA, and by Gödel' first theorem, it is proved that G is not provable in PA (if 

PA is consistent). So for G we have: G is true iff G is not provable. 

 The existence of such a sentence G is rejected by Wittgenstein in his 

Remarks on the Foundations of Mathematics. Wittgenstein's argument is 

based on his finitism (constructivism), according to which a mathematical 

sentence is meaningful only within a given calculus and if it is effectively 

decidable in this calculus. So a true sentence is just a proved sentence. By 

transcending the given calculus (or system) and by inserting the same 

sentence in other calculus its meaning have changed. So a sentence cannot 

be true but unprovable in a given calculus. In other words, Gödel's sentence 

G, true and unprovable in PA, is just a contradiction in terms. 

 The source of Wittgenstein's rejection of G is his rejection of the 

meta-mathematics (i.e. of the distinction object language / meta-language), 

by his identification of the arithmetical truth with the formal derivability, in 

connection to the thesis that a sentence is meaningful only in the context of 

its use. 
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 A particular note of Wittgenstein's stance is brought in the Appendix 

of his Remarks, § 8, by saying that Gödel's sentence G does not admit the 

interpretation in English language as "G is unprovable". As we showed this 

mistaken interpretation of Gödel's theorem is also based on the mistaken 

elimination of the distinction syntax / semantics, a distinction imposed by 

Gödel's result: if PA is consistent then G is true iff G is not provable, so 

"true" and "provable" do not mean the same thing. Hence, Wittgenstein's 

rejection of the interpretation of G as "G is unprovable" is not rejected by 

Gödel's result, but by Wittgenstein's identification of "true" with "provable", 

a case in which this interpretation of G is not compatible with the assertion 

of provability of G. But the setting up of the distinction language / meta-

language and eo ipso of the difference between truth and proof, the 

compatibility of the interpretation of G as "G is umprovable" is completely 

established. 

 As we mentioned in 2.1, on Wittgenstein's view every sentence of 

mathematics must belong to a calculus and then it is either provable or 

refutable. So the tertium non datur holds for all mathematical sentences. But 

what can be said if such a sentence in G? 

 According to Goodstein42 Wittgenstein overlooks the possibility of 

arguing the truth of the sentence G by using tertium non datur. 
 

We may simply appeal to the tertium non datur to assert that one of 

(∀x)G(x),∃x¬G(x) is true, and since neither of these sentences is provable 

(in Gödel's version of Principia Mathematica) one of the sentences is both 

true and unprovable (without committing ourselves to saying which one is 

true).43 

 

 Concerning this passage, the following remarks can be made. 

Firstly, this line of arguing the truth of G cannot be taken as an omission in 

Wittgenstein's view, for according to Wittgenstein, the sentence G, being 

not provable in PA, is not completely meaningful. So by what is said above 

the tertium does not apply to it. Secondly, Goodstein's fragment does 

                                                
42 R.I. Goodstein [1972]. 
43 279-280. 
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contain an error. For though G and ¬G are not provable in PA, we can say 

that G is true, for, as we showed in 1.2, if G were false, then its negation 

∃yβ(k,y) will be true and that means that G is provable in PA, contradicting 

Gödel's first incompleteness theorem. 

 Finally, in section 3, we question the idea whether there is a sense in 

which the truth can constructively be defined. More exactly, based on 

fundamental results of recursion theory and computability, we showed that 

the truth of a PA-formula can be defined in terms of Turing-computability. 

But in this interpretation (i.e. in a constructive model) the sentence G is 

constructively true but not 1
T -computable. 
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